| 26 | 0 | 39 |
| 下载次数 | 被引频次 | 阅读次数 |
胰腺导管癌是一种致死率很高的消化道恶性肿瘤,其5年生存率仅为8%。胰腺导管癌对传统化疗药物具有抵抗性,且目前仍然缺乏有效的靶向药物和免疫治疗手段,因此深入探究其分子机制和寻找新治疗靶点至关重要。随着转录水平的整体上升,胰腺导管癌细胞对于参与转录加工过程的RNA结合蛋白表现出更强的依赖性。本文将介绍RNA结合蛋白在胰腺导管癌中的研究进展,重点阐述剪接因子、多聚腺苷酸化因子与胰腺导管癌的关联。
Abstract:Pancreatic ductal adenocarcinoma(PDAC) is a highly lethal malignancy of the digestive tract, with an overall 5-year survival rate of just 8%. PDAC is resistant to traditional chemotherapy drugs, and effective targeted and immune therapies are lacking. Hence, it is important to study its molecular mechanisms and explore new therapeutic targets. The increased transcriptional activity leads to a stronger dependence of PDAC cells on RNA binding proteins(RBPs) involved in co-transcriptional pre-mRNA processing. This article aimed to introduce the research progress of RBPs in PDAC, especially the relationship between splicing factors, polyadenylation factors and PDAC.
[1] Siegel R L,Kratzer T B,Giaquinto A N,et al.Cancer statistics,2025 [J].CA A Cancer J Clin,2025,75(1):10-45.
[2] Gyawali B,Booth C M.Treatment of metastatic pancreatic cancer:25 years of innovation with little progress for patients [J].Lancet Oncol,2024,25(2):167-170.
[3] Bradner J E,Hnisz D,Young R A.Transcriptional addiction in cancer [J].Cell,2017,168(4):629-643.
[4] Gerstberger S,Hafner M,Tuschl T.A census of human RNA-binding proteins [J].Nat Rev Genet,2014,15(12):829-845.
[5] Glisovic T,Bachorik J L,Yong J,et al.RNA-binding proteins and post-transcriptional gene regulation [J].FEBS Lett,2008,582(14):1977-1986.
[6] Bonnal S C,López-Oreja I,Valcárcel J.Roles and mechanisms of alternative splicing in cancer—implications for care [J].Nat Rev Clin Oncol,2020,17(8):457-474.
[7] Dvinge H,Kim E,Abdel-Wahab O,et al.RNA splicing factors as oncoproteins and tumour suppressors [J].Nat Rev Cancer,2016,16(7):413-430.
[8] Alors-Perez E,Blázquez-Encinas R,Alcalá S,et al.Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug [J].J Exp Clin Cancer Res,2021,40(1):382.
[9] Biankin A V,Waddell N,Kassahn K S,et al.Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes [J].Nature,2012,491(7424):399-405.
[10] Blázquez-Encinas R,Alors-Pérez E,Moreno-Montilla M T,et al.The Exon Junction Complex component EIF4A3 plays a splicing-linked oncogenic role in pancreatic ductal adenocarcinoma [J].Cancer Gene Ther,2024,31(11):1646-1657.
[11] Wan L,Lin K T,Rahman M A,et al.Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancreatic cancer [J].Cancer Discov,2023,13(7):1678-1695.
[12] Guo Z,Huang J,Lu Z J,et al.Targeting TUT1 depletes tri-snRNP pools to suppress splicing and inhibit pancreatic cancer cell survival [J].Cancer Res,2025,85(7):1270-1286.
[13] Kahles A,Lehmann K V,Toussaint N C,et al.Comprehensive analysis of alternative splicing across tumors from 8,705 patients [J].Cancer Cell,2018,34(2):211-224.e6.
[14] Rhine C L,Cygan K J,Soemedi R,et al.Hereditary cancer genes are highly susceptible to splicing mutations [J].PLoS Genet,2018,14(3):e1007231.
[15] Jayasinghe R G,Cao S,Gao Q,et al.Systematic analysis of splice-site-creating mutations in cancer [J].Cell Rep,2018,23(1):270-281.e3.
[16] Papaemmanuil E,Cazzola M,Boultwood J,et al.Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts [J].N Engl J Med,2011,365(15):1384-1395.
[17] Yoshida K,Sanada M,Shiraishi Y,et al.Frequent pathway mutations of splicing machinery in myelodysplasia [J].Nature,2011,478(7367):64-69.
[18] Li J,Choi P S,Chaffer C L,et al.An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer [J].Elife,2018,7:e37184.
[19] Tripathi V,Shin J H,Stuelten C H,et al.TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance [J].Oncogene,2019,38(17):3185-3200.
[20] Bechara E G,Sebestyén E,Bernardis I,et al.RBM5,6,and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation [J].Mol Cell,2013,52(5):720-733.
[21] Wang Y,Chen D,Qian H,et al.The splicing factor RBM4 controls apoptosis,proliferation,and migration to suppress tumor progression [J].Cancer Cell,2014,26(3):374-389.
[22] Abou Faycal C,Gazzeri S,Eymin B.A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells [J].Sci Rep,2019,9(1):336.
[23] Maurin M,Ranjouri M,Megino-Luque C,et al.RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing [J].Nat Commun,2023,14(1):8444.
[24] Jbara A,Lin K T,Stossel C,et al.RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer [J].Nature,2023,617(7959):147-153.
[25] Nie H,Huang P Q,Jiang S H,et al.The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer [J].Theranostics,2021,11(8):3898-3915.
[26] Calabretta S,Bielli P,Passacantilli I,et al.Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells [J].Oncogene,2016,35(16):2031-2039.
[27] Effenberger K A,Urabe V K,Jurica M S.Modulating splicing with small molecular inhibitors of the spliceosome [J].Wiley Interdiscip Rev RNA,2017,8(2):10.1002/wrna.1381.
[28] Yang C L,Wu Y W,Tu H J,et al.Identification and biological evaluation of a novel CLK4 inhibitor targeting alternative splicing in pancreatic cancer using structure-based virtual screening [J].Adv Sci,2025,12(19):e2416323.
[29] Yuan F,Hankey W,Wagner E J,et al.Alternative polyadenylation of mRNA and its role in cancer [J].Genes Dis,2019,8(1):61-72.
[30] Shi Y,Di Giammartino D C,Taylor D,et al.Molecular architecture of the human pre-mRNA 3′ processing complex [J].Mol Cell,2009,33(3):365-376.
[31] Chan S L,Huppertz I,Yao C,et al.CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing [J].Genes Dev,2014,28(21):2370-2380.
[32] Sch?nemann L,Kühn U,Martin G,et al.Reconstitution of CPSF active in polyadenylation:recognition of the polyadenylation signal by WDR33 [J].Genes Dev,2014,28(21):2381-2393.
[33] Kaufmann I,Martin G,Friedlein A,et al.Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase [J].EMBO J,2004,23(3):616-626.
[34] Venkataraman K,Brown K M,Gilmartin G M.Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition [J].Genes Dev,2005,19(11):1315-1327.
[35] Takagaki Y,Manley J L.RNA recognition by the human polyadenylation factor CstF [J].Mol Cell Biol,1997,17(7):3907-3914.
[36] Mandel C R,Kaneko S,Zhang H,et al.Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease [J].Nature,2006,444(7121):953-956.
[37] Alahmari A A,Chaubey A H,Jonnakuti V S,et al.CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing [J].RNA,2024,30(3):281-297.
[38] Zheng Y S,Chen M L,Lei W D,et al.NUDT21 knockdown inhibits proliferation and promotes apoptosis of pancreatic ductal adenocarcinoma through EIF2 signaling [J].Exp Cell Res,2020,395(2):112182.
[39] Huang X D,Chen Y W,Tian L,et al.NUDT21 interacts with NDUFS2 to activate the PI3K/AKT pathway and promotes pancreatic cancer pathogenesis [J].J Cancer Res Clin Oncol,2024,150(1):8.
[40] He X,Liu J,Zhou Y,et al.CSTF2-impeded innate αβ T cell infiltration and activation exacerbate immune evasion of pancreatic cancer [J].Cell Death Differ,2025,32(5):973-988.
[41] Venkat S,Tisdale A A,Schwarz J R,et al.Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma [J].Genome Res,2020,30(3):347-360.
[42] Passacantilli I,Panzeri V,Bielli P,et al.Alternative polyadenylation of ZEB1 promotes its translation during genotoxic stress in pancreatic cancer cells [J].Cell Death Dis,2017,8(11):e3168.
基本信息:
DOI:
中图分类号:R735.9
引用信息:
[1]郭子玮,陈默.RNA结合蛋白在胰腺导管癌中的研究进展[J].胃肠病学和肝病学杂志,2025,34(09):1262-1264.
基金信息:
国家自然科学基金委员会资助项目(32370589)